在鑄造生產中廣泛使用的球化劑是稀土鎂硅鐵合金。其中的鎂元素主要是以硅化鎂(Mg2Si)和氧化鎂(MgO)兩種形態存在。硅化鎂作為球化劑中的一個單獨相而存在,氧化鎂則作為稀土鎂硅鐵合金中的非金屬夾雜物而存在。
一些鑄造企業只對球化劑中的Mg元素進行檢測,并作為其中有效Mg的含量。由于MgO對于球化不起作用,而傳統的Mg元素測定方法不能區分有效Mg和無效Mg的實際含量,所以在Mg元素達標的前提下,MgO的存在直接減少了球化劑中有效Mg的含量,對球化過程和產品質量造成不良影響。石墨球異化:石墨球異化出現不規則石墨,如團塊狀、蝌蚪狀、蠕蟲狀、角狀或其他非圓球狀。
所以球化劑的生產過程中,控制氧化鎂的含量是一項十分重要的工作,而且球化劑中氧化鎂的含量也是檢驗球化劑質量的重要指標。
縮孔縮松:縮孔常出現在鑄件然后凝固部位(熱節處、冒口頸與鑄件連接處、內角或內澆口與鑄件連接處),是隱蔽于鑄件內部或與外表連通的孔洞。縮松,宏觀的出現在熱節處,細微的收縮孔洞,大多是孔洞內部互相連通。與球化元素有關的是,要控制殘余鎂和稀土不能過高,這對減少宏觀和微觀縮松都有明顯效果,縮松傾向幾乎與球化元素成正比。鋇作為石墨化元素與鎂一起可降低鎂在高溫下的蒸汽壓,提高鎂的吸收率,增加單位體積球墨鑄鐵的石墨球數,強化孕育的效果,抑制碳化物的形成。
石墨球異化:石墨球異化出現不規則石墨,如團塊狀、蝌蚪狀、蠕蟲狀、角狀或其他非圓球狀。這是由于球狀石墨沿輻射方向生長時,局部晶體生長模式和生長速率偏離正常生長規律所致。鑄件中殘余球化元素量超出應有范圍時,如殘余鎂太高,超過了保持石墨球化所需的較低量時,也會影響石墨結晶條件,就容易產生蝌蚪壯石墨。而殘余稀土較多時,高碳當量鐵水易產生碎塊石墨,碎塊石墨的集中區域一般稱做“灰斑”。而蠕蟲狀石墨的出現則是由于球化元素殘余量不足或者含有超限的鈦和鋁。5~1%,余量為Fe的粉狀材料及含鎂量≤5%的稀土硅鐵合金分層壓入,制成整體球化劑。