對于常規的生物脫氮工藝,復合碳源應直接投加在缺氧段,并通過缺氧段內的攪拌器與進水及混合液充分混合,需防止水流劇烈紊流導致CH?OH/CH?O揮發至空氣,也應防止因多余的氧氣存在造成部分復合碳源被細菌好氧呼吸消耗。
如果污水廠采用四階段或五階段活性污泥工藝,在后續的缺氧段(第二缺氧段) 投加碳源可以獲得比內源呼吸更高的反硝化速率;對于三級反硝化系統,如反硝化濾池、反硝化好氧生物濾池等, 則補充碳源對于系統的運行非常重要。
因為反硝化過程在主體曝氣工藝的下游,進水中的所有溶解性BOD都已經被去除,所以復合碳源通常投加于反硝化進水中。
反硝化反應為 6NO3-+ 5CH3OH → 3N2+ 5CO2 + 7H2O + 6OH- ,根據此反應去除1mg NO3-N 需要1.9mg CH3OH。以CH3-OH作為碳源比以葡萄糖作為碳源反硝化速率快很多。CH?OH/CH?O在保存和使用上都需要多注意,對人體有低毒,因為在人體新陳代謝中會氧化成比毒性更強。葡萄糖:若一葡萄糖作為碳源9C6H12O6),C6H12O6:NO3 -N 大約為7左右,容易引起細菌的大量繁殖,導致污泥膨脹,增加出水中COD的值,影響出水水質。建議用葡萄糖,用葡萄糖效果還是不錯的,面粉效果比葡萄糖差。
面粉:這里說的面粉為小麥精致面粉,成分上也是非常高的。當缺氧或者厭氧池子中的污泥濃度較低時,通過以小麥面粉補充碳源對活性污泥的形成是有著很大的幫助的。同時,面粉也較容易買到。如設備的容積比較小,可以考慮以面粉作為碳源。
乙酸鈉:若以乙酸鈉(CH3COONa)作為碳源,是小分子有機酸的原因, 反硝化菌易于利用,脫氮效果是較好的。一般冬天時投加碳源,都是建議可以選擇乙酸鈉作為碳源投加,易溶于水,易被微生物所利用,所產生的污泥量相比于其他碳源時略高,花費上也是高于以面粉,葡萄糖,CH?OH/CH?O作為碳源的。
復合碳源藥劑可以替代傳統外加碳源藥劑,避免了傳統碳源藥劑的高成本、高風險問題,大大提升了脫氮效率,降低了處理成本和污泥產量。
硝化反硝化脫氮是生物脫氮技術,目前在污水處理領域有著廣泛的應用。在微生物脫氮方面,進行反硝化作用時,異養反硝化菌需消耗做為碳源并提供能量的外加有機物(碳源)。 國內外對外碳源的投加種類和投加量進行了一系列的研究,發現不同外碳源對系統的反硝化過程影響不同,即使外碳源投加量相同,處理效果也不同。
復合碳源含有多種營養元素,主要成分有:揮發性脂肪酸VFAS,天然微生物素PHA,多元醇,多類糖(3%-5%),微量元素和生長因子。 微生物的代謝途徑包括常見的EMP途徑(絕大多數微生物都有)、TCA途徑(普遍有)、ED途徑等。微生物利用碳源是由他自身具有的代謝過程相匹配的,不同的微生物,代謝途徑不同,同種微生物也會有一種或多種代謝途徑,每種途徑的效率會不同。葡萄糖的代謝途徑是糖酵解,像葡萄糖單一性碳源的代謝途徑只有一種,使用過程中會出現讓某種微生物大量繁殖而抑制了其他微生物的營養吸收,(葡萄糖易引起絲狀菌大量繁殖)促進反硝化的同時,也可能會對其他菌的種類造成不好的影響,造成系統抗沖擊能力下降。 選擇復合碳源成分豐富,代謝途徑多樣化,包含TCA循環,糖酵解以及絲氨酸循環等多種代謝途徑,能提升微生物活力和抗沖擊力,能夠很好的避免這些問題。生物利用率好,降低成本。復合碳源生產是通過生物發酵技術,生物利用率在95%以上,且對比葡萄糖等傳統碳源要好一點,在達標的情況下,更能降低污水處理成本!