|
公司基本資料信息
|
MIDI教室的發展歷程
八十年代初,各生產廠家都按照自己的規格生產電子樂器,當同時使用幾家公司的設備構成一個電腦音樂系統的時候,出現了不兼容問題。
1982年,國際樂器制造者協會的十幾家廠商會聚一堂,會議通過了美國Sequential Circuits公司提出的“通用合成器接口”的方案,并改名為“音樂設備數字接口”,公布于世。
1983年,MIDI協議 1.0版正式制定出來。此后,所有的商業用電子樂器的背后都出現了幾個五孔的MIDI插座,樂器之間不再存在“語言障礙”,它們同裝上MIDI接口的電腦一起。作用就是使電子樂器與電子樂器,電子樂器與電腦之間通過一種通用的通訊協議即MIDI協議進行通訊。MIDI的出現解決了各個不同廠商之間的數字音樂樂器的兼容問題。
1984,日本羅蘭公司于提出了GS標準,大大增強了音樂的表現力。
1991年,為了更有利于音樂家廣泛地使用不同的合成器設備和促進MIDI文件的交流,國際MIDI生產者協會(MMA)制定了通用MIDI標準——GM,該標準是以日本Roland公司的通用合成器GS標準為基礎而制訂的。GM標準的提出得到了Windows操作系統的支持,使得數字音樂設備之間的信息交流得到了簡化,受到全世界數字音樂愛好者的一致好評。
1994年,YAMAHA公司在GM標準上于推出了自己的XG的MIDI格式,增加了更多數量的樂器組,擴大了MIDI標準定義范圍,在音樂范圍內得到廣泛的應用。
MIDI教室——MIDI介紹
MIDI要形成電腦音樂必須通過合成。早期的ISA聲卡普遍使用的是FM合成,即“頻率調變”。它運用聲音振蕩的原理對MIDI進行合成處理,由于技術本身的局限,效果很難令人滿意。聲卡大都采用的是波表合成了,它首先將各種真實樂器所能發出的所有聲音(包括各個音域、聲調)進行取樣,存儲為一個波表文件。在播放時,根據MIDI文件記錄的樂曲信息向波表發出指令,從“表格”中逐一找出對應的聲音信息,經過合成、加工后回放出來。由于它采用的是真實樂器的采樣,所以效果自然要好于FM。一般波表的樂器聲音信息都以44.1KHz、16Bit的精度錄制,以達到真實的回放效果。理論上,波表容量越大合成效果越好。根據取樣文件放置位置和由微處理器或CPU來處理的不同,波表合成又常被分為軟波表和硬波表。
MIDI教室——MIDI標準
常見的MIDI標準由GM、GS、XG,各標準之間存在著競爭。GS標準是在ROLAND的早期產品MT-32和CM-32/64的基礎之上,規定了MIDI設備的同時發音數不得少于24個、鼓镲等打擊樂器作為一組單獨排列、128種樂器音色有統一的排列方式等。有了這種排列方式,只要是在支持GS標準的設備上制作的音樂,拿到任何一臺支持同樣標準的設備上都能正常播放。
在GS標準基礎上,主要規定了音色排列、同時發音數和鼓組的鍵位,而把GS標準中重要的音色編輯和音色選擇部分去掉了。
GM的音色排列方式基本上沿襲了GS標準,只是在名稱上進行修改。XG同樣在兼容GM的基礎上做了大幅度的擴展,如加入了“音色編輯”的功能,使得作曲家可以在MIDI樂曲中實時地改變樂器的音色;還加入了“音色選擇”功能,在每一個XG音色上可以疊加若干種音色。
MIDI教室——MIDI的應用領域
MIDI電視晚會的音樂編導可以用MIDI功能輔助音樂創作,或按MI-DI標準生成音樂數據傳播媒介,或直接進行樂曲演奏。如果在計算機上裝備了MIDI軟件庫,可將音樂的創作、樂譜的打印、節目編排、音樂的調整、音響的幅度、節奏的速度、各聲部之間的協調、混響由MIDI來控制完成。利用MIDI技術將電子合成器、電子節奏機(電子鼓機)和其他電子音源與序列器連接在一起即可演奏模擬出氣勢雄偉、音色變化萬千的音響效果,又可將演奏中的多種按鍵數據存儲起來,極大的改善了音樂演奏的能力和條件。